

DEPINNING TRANSITION FOR DOMAIN WALLS WITH AN INTERNAL DEGREE OF FREEDOM

Vivien Lecomte⁽¹⁾, Stewart E. Barnes^(1,2), Jean-Pierre Eckmann⁽³⁾, Thierry Giamarchi⁽¹⁾

⁽²⁾Physics Department, University of Miami ⁽¹⁾Département de Physique de la Matière Condensée, Genève ⁽³⁾Département de Physique Théorique et Section de Mathématiques, Genève

UNIVERSITE

Abstract

We examine the dynamics of a domain wall subject to a pinning potential, in situations where the position of the wall is coupled to an internal degree of freedom (e.g. a spin phase, in magnetic domain walls). We investigate the corresponding depinning transition, which displays several novel features when compared to standard cases. At zero temperature, there exists a bistable regime for low forces, with a logarithmic behavior close to the transition. For weak pinning, there occurs a succession of bistable transitions corresponding to different modes of the phase evolution, separated by topological transitions. At finite temperature, using techniques from stochastic dynamical systems, we show that the force-velocity characteristics is non-monotonous, as an effect of the zero-temperature topological transitions [1]. We compare our results to recent experiments [2] on permalloy nanowires.

Interfaces & depinning transition

90µm from Lemerle et al., PRL 80 849 (1998)

 \uparrow velocity vT = 0: T > 0:

- Examples of interfaces:
 - (figure on the left) \star magnetic domain wall \star contact line \star growth interface
 - \star propagating crack
- \rightarrow large variety of time and space scales
- Common underlying description of interfaces: \star complex object described by its mere position r(z) \star elasticity tends to flatten the interface \star disorder tends to deform it
 - \rightarrow competition btw "order" and "disorder" nontrivial landscape of energy yielding metastability, roughness, pinning

Depinning transition: \star at T = 0: pinning up to a critical force f_c

 \star depinning above f_c , reminiscent of static phase tr.

Conclusion & outlook

Phase space

For some regime of force, **bistability** occurs.

Trajectories in the periodic (r, φ) phase space • are determined through the fixed points: $\star S$ is stable (attractive)

 $\star U$ is unstable (repulsive)

 $\star H_1$ and H_2 are hyperbolic (stable+unstable directions)

• and split into those

 \star ending at S (having v = 0) (green) ★ rolling to the limit circle (turquoise, blue) (having v > 0)

At $f = f_c^{\star}$ occurs a homoclinic bifurcation.

Effect of coupling to an internal degree of freedom: \star unusual depinning law ★ bistability \star non-monotonous v(f) at finite T \star link with experiments

magnetic field (Oe)

References

[1] Lecomte V, Barnes SE, Eckmann J-P, Giamarchi T, PRB 80 054413 (2009) [2] Parkin SSP et al., Science **320** 190 (2008) [3] Vollmer HD, Risken H, Z. Phys. B **37** 343 (1980) [4] Le Doussal P, Marchetti MC, *PRB* **78** 224201 (2008) [5] Schryer NL, Walker LR, J. Applied Phys. 45 5406 (1974) [6] Duine RA, Morais-Smith C, *PRB* **77** 094434 (2008)

Perspective: \star Current driven wall \star Interface with elasticity \rightarrow modified creep law? * Experiments: periodic patterning