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Abstract

We examine the dynamics of a domain wall subject to a pinning potential, in situations where the position of the wall is coupled
to an internal degree of freedom (e.g. a spin phase, in magnetic domain walls). We investigate the corresponding depinning
transition, which displays several novel features when compared to standard cases. At zero temperature, there exists a bistable
regime for low forces, with a logarithmic behavior close to the transition. For weak pinning, there occurs a succession of bistable
transitions corresponding to different modes of the phase evolution, separated by topological transitions. At finite temperature,
using techniques from stochastic dynamical systems, we show that the force-velocity characteristics is non-monotonous, as an effect
of the zero-temperature topological transitions [1]. We compare our results to recent experiments [2] on permalloy nanowires.

Interfaces & depinning transition

from Lemerle et al., PRL 80 849 (1998)

Examples of interfaces:

⋆ magnetic domain wall (figure on the left)

⋆ contact line

⋆ growth interface

⋆ propagating crack

→ large variety of time and space scales
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Common underlying description of interfaces:

⋆ complex object described by its mere position r(z)

⋆ elasticity tends to flatten the interface

⋆ disorder tends to deform it

→ competition btw “order” and “disorder”
nontrivial landscape of energy
yielding metastability, roughness, pinning
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Depinning transition:

⋆ at T = 0: pinning up to a critical force fc

⋆ depinning above fc, reminiscent of static phase tr.

⋆ BUT: depinning is dynamical

⋆ at T > 0: creep, thermal rounding

Question & model

• Is r(z) containing enough information?
→ examine models with r coupled to an internal degree of freedom ϕ

(
∂tr, ∂tϕ

)
= fpinning(r, ϕ) + fext

• Example situations:

⋆ underdamped motion in a periodic potential [3]

⋆ viscously coupled elastic manifolds [4]

⋆ domain walls in ferromagnetic materials [5]

• Ferromagnetic wire:

Domain wall of position r(t)

magnetization ↓

effective equations [6]:

{
α∂tr − ∂tϕ =

pinning
︷ ︸︸ ︷
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α∂tϕ + ∂tr = −1

2
K⊥ sin 2ϕ + η2

Position r coupled to phase ϕ

Phase space

For some regime of force, bistability occurs.

Trajectories in the periodic (r, ϕ) phase space

• are determined through the fixed points:

⋆ S is stable (attractive)

⋆ U is unstable (repulsive)

⋆ H1 and H2 are hyperbolic
(stable+unstable directions)

• and split into those

⋆ ending at S (having v = 0) (green)

⋆ rolling to the limit circle (turquoise,blue)
(having v > 0)

At f = f⋆
c occurs a homoclinic bifurcation.

Results at zero temperature
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Dramatic change in the depinning law:

⋆ v ∼ 1
| log(f−f ⋆

c
)| 6= the standard v ∼ (f − f⋆

c )β

⋆ bistable regime for f⋆
c < f < fc

Interpretation: for f⋆
c < f < fc, the wall is

⋆ either pinned

⋆ or r slides down its tilted potential
while ϕ oscillates around its own minimum,
helping r to cross its barriers

→ ϕ plays the rôle of inertia
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Topological transition:

⋆ successive regimes

⋆ characterized by
winding numbers W

Interpretation: increasing f ,

⋆ ϕ crosses its barrier and falls into its minimum

⇒ dissipation increases and ϕ cannot help r anymore

⋆ at larger f : revival with both r and ϕ increasing

Results at finite temperature
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H1 = (0, 0)S = (−ε, 0)

ϕ̃

r̃

d(ε)(ε ∝ f − fc)
trappingprobability

Arrhenius
∝

√
T

velocity ∼ characteristic length

escape time

escape time ∼ exp

(

ε3

T

)

︸ ︷︷ ︸
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T
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2
)
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Depinning law v(f ) at finite temperature:

⋆ all curves cross at fixed force f⋆⋆
c

⋆ contrasts with standard thermal rounding

⋆ in the T → 0+ limit: v(f ) is discontinuous in f⋆⋆
c

Topological transition at finite temperature:

the depinning law v(f ) is non-monotonous

Comparison to experiment

(a) numerical results
(b) experimental results

from Parkin’s group [2]
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(b)
• Experimental results [2]:

non-monotonous v(f ) with two peaks

•Walker’s model [5] (no pinning potential):
only one peak

•Our results (simple pinning potential):

⋆ two peaks in v(f ) for reasonable parameters

⋆ prediction: the emf (∝ 〈ϕ̇〉) increases at the
second peak

Conclusion & outlook

Effect of coupling to an
internal degree of freedom:

⋆ unusual depinning law

⋆ bistability

⋆ non-monotonous v(f ) at finite T

⋆ link with experiments

Perspective:

⋆ Current driven wall

⋆ Interface with elasticity

→ modified creep law?

⋆ Experiments:periodic patterning
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